Beogradski Ultramarathon

Measurement course and certificate application

APPLICATION FOR CERTIFICATION OF A ROAD COURSE
Belgrade Ultramarathon
Name of event: Self-Transcendence 6/12/24 Hour Race

Advertised race distance \qquad Race date: \qquad

Race director: Irina Skerl

Address: Sri Chinmoy Marathon Team, Hilandarska 24, 11000 Beograd

Phone:+ +38111245 2025 Fax: \qquad Email: scmt.rs@srichinmoyraces.org Name of measurement team leader: Ivan Rečević

Address: Bulevar Zorana Đinđića 166

Phone: 063-370-956 Fax: \qquad Email: \qquad

Location of start: Kalemegdan Fortress, Belgrade, Serbia

Location of finish: Kalemegdan Fortress, Belgrade, Serbia

Type of terrain (please tick)

Hilly
Type of course (please tick) \qquad Point to point Other

Altitude (in metres above sea level): Start \qquad Finish $\quad 70 \mathrm{~m}$

Distance, in a straight line, between start and finish: $\quad 0 \mathrm{~m}$

SUMMARY OF MEASUREMENTS

Date(s) of measurement: 15.3.2015
How many measurements of the course were made? one
Names of measurers: Ivan Rečević

How much of the road width is available to runners throughout the length of the road race course?
Completely available to racers. It is a park.

If the route at turns cannot be described as the 'shortest possible route', explain what restrictions will apply, and how these will be enforced?
\qquad
\qquad

Length of course after any adjustment: 1357 m

Difference between longest and shortest measurement:

Which measurement was used to establish the final course length and WHY?

OVERVIEW OF THE MEASUREMENT PROCEDURE

Provide an overview below of the processes and procedures you followed when undertaking this measurement.
We started with calibration - taking into account current temperature
(3C) and decrease of measure by 4 cm . After calibration course
measure, we moved through course understanding how runners will move on the course. We identified pedestrian walk on the south side of park which we can use for any adjustment in order to round the course to nice number

Measurement of course was done in three sections. From start to
point A (corner of exit to pedestrian walk), from A until the end of pedestrian walk, back to point B (oposite to point A), and from B to finish.

After measurement we did again measurement of calibration course in order to identify any changes
-
\qquad
\qquad
\qquad
\qquad
\qquad

[^0](4) Лазареевић

Лазаревић
Despoo stetan Lazarevi

DETAIL OF THE CALIBRATION COURSE

2

Is the calibration course: STRAIGHT? \qquad PAVED?
YES touch them, or elsewhere?
start and finish points are located in the road and bicycle can touch.
16 Bicycle check. This is a check against miscounting the number of tape lengths. (if you use a gross measurement check other than a bicycle, please explain.)
A. Counts for full calibration course
B. Counts for one tape length
C. Divide A by B
D. Number of full tape lengths

17 Submit a map of this calibration course, showing direction of north, the name of the road (and relevant cross streets), and the exact locations of start and finish points, including taped distances from nearby permanent locations

STEEL TAPING DATA SHEET
For measuring a calibration cours
Belgrade Ultramarathon
Name of calibration course: Self-Transcendence 6/12/24 Hour Race
City/town and State: Beograd, Serbia
Date: \quad 15.03.2014

Start time: \qquad Finish time:
$11: 30$
Pavement temperature: Start 3 Finish 3 Average 3
(thermometer shaded from direct sun)

Measurements and calculations:

1 First measurement. This establishes tentative start and finish marks which should
not be changed until the final adjustment on line 6 below.
$\frac{4}{\# \text { tape }} \times$
$\times \frac{50 m}{\text { distance per }}$
0
0 \qquad lengths measured lengths tape length length distance

2 Second measurement. This checks the distance between the SAME tentative start and finish points marked in the first measurement, but use new intermediate taping points.
\qquad $x \frac{50 \mathrm{~m}}{\text { distance pe }}$ $+\frac{0}{\text { partial tape }}$ $=\frac{200 \mathrm{~m}}{\begin{array}{c}\text { measured } \\ \text { distance }\end{array}}$ lengths distance per
tape length length
\qquad
\qquad
4 Temperature correction. Use the average pavement temperature during measurement. Work out answer to at least seven digits beyond the decimal point.
Correction factor $=1.0000000+(.0000116 \times[$ Celsius temperature -20$])$ Correction factor =
NOTE:
For temperatures below 20C, factor is less than one
For temperatures above 20C, factor is greater than one
5 Multiply the temperature correction factor by the average raw measurement of the course (line 3)
0,9998028 \qquad $=$ \qquad 199,96056m correction factor avg. raw measurement \qquad
If you wish, you may now adjust the course to obtain an even distance, such as one kilometre. This is not necessary as you may choose instead to use an odddistance calibration course whose endpoints are pre-existing permanent objects in the road to guard against hazards such as repaving. If you adjusted the course, explain why you did it.
Final (adjusted) length of calibration course \qquad

BICYCLE CALIBRATION DATA SHEET

Name of event: Beogradski ultramaraton
Date of measurement 15.03.2015
Name of measurer: IVan Rečević
Length of calibration course: $199,96 m$

PRE-CALIBRATION - ride the calibration course four times, recording data as follows:

Ride	Ride	Counts	Relative
1	Ride 1	779131	2.264,0
2	Ride 2	781395,5	2.264,5
3	Ride 3	783659	2.263,5
4	Ride 4	785923	2.264,0
Time of day	10:20	- Temperature:	: 3

WORKING CONSTANT $=$ number of counts in one kilometre, calculated from the premeasurement average count, and multiplied by 1.001 - the 'short course prevention factor'

Pre-measurement average count $=2264$
Counts per $\mathrm{km}=$ pre-measurement average count x 1000/length of calibration course in metres Working Constant $=$ counts per $\mathrm{km} \times 1.001=11,3336$
POST-CALIBRATION - ride the calibration course four times, recording data as follows:

Ride	Ride	Counts	Relative	\square
1	Ride 1	821034	$2.264,0$	
2	Ride 2	823299	$2.265,0$	
3	Ride 3	825563	$2.264,0$	
4	Ride 4	827828	$2.265,0$	

Time of day: \qquad Temperature: \qquad

FINISH CONSTANT = number of counts in one kilometre, calculated from the post-measurement average count, and multiplied by 1.001 - the 'short course prevention factor'

Post-measurement average count = 2264,5
Counts per km = post-measurement average count x 1000/length of calibration course in metres 11.324,733 Finish Constant $=$ counts per $\mathrm{km} \times 1.001=11,3361$

CONSTANT FOR THE DAY = the average of the working constant and the finish constant $=$

COURSE MEASUREMENT DATA SHEET

Name of event: Beogradski ultramaraton
Name of measurer: Ivan Rečević
Date of measurement: 15.03.2015
Start time: 10:20
Finish time: 11:30
Temperature:
Temperature:
Constant for the Day: 11,3348 counts/km

MEASUREMENT DATA

Desired length of course: 1300 m
Length of course as measured: $1357,65 m$
Note any adjustments made to the course after measurement: \qquad
As organizer wanted course with 1300 m , we re-measured section
from A to B in order to achieve full length of 1300 m . $160,35 \mathrm{~m}$ from A
(1.817 counts)

[^0]: Деспот Стефаи

